
49

Effective Social Graph Deanonymization Based on Graph Structure
and Descriptive Information

HAO FU, University of Science and Technology of China
ASTON ZHANG, University of Illinois at Urbana-Champaign
XING XIE, Microsoft Research

The study of online social networks has attracted increasing interest. However, concerns are raised for
the privacy risks of user data since they have been frequently shared among researchers, advertisers, and
application developers. To solve this problem, a number of anonymization algorithms have been recently
developed for protecting the privacy of social graphs. In this article, we proposed a graph node similarity
measurement in consideration with both graph structure and descriptive information, and a deanonymiza-
tion algorithm based on the measurement. Using the proposed algorithm, we evaluated the privacy risks of
several typical anonymization algorithms on social graphs with thousands of nodes from Microsoft Academic
Search, LiveJournal, and the Enron email dataset, and a social graph with millions of nodes from Tencent
Weibo. Our results showed that the proposed algorithm was efficient and effective to deanonymize social
graphs without any initial seed mappings. Based on the experiments, we also pointed out suggestions on
how to better maintain the data utility while preserving privacy.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—Security,
integrity, and protection; K.4.1 [Computers and Society]: Public Policy Issues—Privacy

General Terms: Algorithms, Experimentation, Security

Additional Key Words and Phrases: Deanonymization, privacy protection, social network

ACM Reference Format:
Hao Fu, Aston Zhang, and Xing Xie. 2015. Effective social graph deanonymization based on graph structure
and descriptive information. ACM Trans. Intell. Syst. Technol. 6, 4, Article 49 (July 2015), 29 pages.
DOI: http://dx.doi.org/10.1145/2700836

1. INTRODUCTION

In social networking sites or other online collaborative tools, a user is represented as
her profile, which contains descriptive information such as her name, gender, and birth
year. While users socialize with others via online services, different kinds of social ties
are established among them. The social ties could be described by information such
as type of relations (friend, family, etc.) and strength of relations (e.g., number of sent
emails). User profiles and their social ties can be described as a social graph, which
consists of both graph structure and descriptive information of user profiles and social
ties.

Social networks have attracted lots of interest among researchers, advertisers, and
application developers. In order to satisfy the need for analysis, operators of social
networking services are increasingly sharing information that could potentially breach

Authors’ addresses: H. Fu (corresponding author), School of Computer Science and Technology, University of
Science and Technology of China; email: fuch@mail.ustc.edu.cn; A. Zhang, Department of Computer Science,
University of Illinois at Urbana-Champaign; X. Xie, Microsoft Research, Beijing, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2157-6904/2015/07-ART49 $15.00
DOI: http://dx.doi.org/10.1145/2700836

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://dx.doi.org/10.1145/2700836
http://dx.doi.org/10.1145/2700836

49:2 H. Fu et al.

users’ privacy. A large portion of research on social network privacy has concentrated
on identity disclosure, which reveals nodes’ identities in the real world. To preserve
privacy, the data need to be anonymized before publishing. A straightforward approach,
namely, the naive anonymization, removes personal identifiable information such as
names and leaves the graph structure as it was.

Backstrom et al. [2007] showed how an adversary can create a small number of
accounts and establish highly distinguishable patterns of links among the created ac-
counts before data publishing, and then search for those patterns and linked target
accounts efficiently in the anonymized graph, namely, an active attack. On the contrary,
a passive attack assumes an adversary cannot create any new nodes or edges. Instead,
she collects external auxiliary information, for example, nodes of interest and partial
edges among them, and then identifies target nodes with the aid of such information.
Hay et al. [2008] investigated the risk of naive anonymization and found that a sig-
nificant number of nodes can be uniquely identified using only the node degrees of
their neighbors. In this article, we focus our discussions on identity disclosure through
passive attacks.

In recent years, several studies on the potential privacy risks of social graph data
have been conducted, and a number of anonymization algorithms have been proposed
to protect privacy against different types of threats. A typical threat could be, for
example, the leaking of node degrees, neighborhoods of breached nodes, or subgraphs
of arbitrary sizes around certain nodes.

Anonymization is performed by modifying the structure and descriptive information
of social graphs. Modification increases the difficulty of attacks but hurts the utility
of data at the same time. In order to satisfy a higher level of privacy requirements, it
is sometimes impossible to maintain sufficient utility. This would make the resulting
anonymized graphs useless for analysis. In practice, while naive anonymization is still
commonly adopted for good utility, it is unclear how data owners would apply the
proposed anonymization algorithms that make minor modifications for better privacy
preservation. In this sense, it is necessary to evaluate the deanonymization risk of the
algorithms in a practical scenario.

Besides, sometimes it is difficult to obtain auxiliary knowledge from the original
graph; for example, the original graph could be highly secured. As the profiles and
relationships in a social networking service are usually corelated with those in the real
world, knowledge from other related social graphs could be leveraged for attacks. In
this case, recognizing users in an immediate manner remains unclear, since the num-
ber of overlapping users is relatively small, and their neighborhood structures may
be different from each other. Narayanan and Shmatikov [2009] illustrated that about
one-third of the users that were presented both in Twitter and Flickr can be mapped
correctly, though the overlap is thought to be only 15%. However, their approach re-
quires a certain number of seed mappings (the location of users in both graphs) to
trigger the deanonymization.

In addition, while social graphs are always evolving over time [Barabâsi et al. 2002],
the descriptive information is also changing. According a recent report,1 about two-
thirds of the users access social networking sites daily, and one-third of the users
who ever updated their status do so nearly every day or more frequently. Therefore,
deanonymizing a graph that was published a long time ago can be difficult, even if only
naive anonymization is applied. We regard such evolution as a kind of “unintended”
anonymization. For example, the Tencent Weibo dataset, which was published in KDD
Cup 2012,2 was taken from a snapshot of the website and naively anonymized. The
dataset description did not specify when the snapshot was taken, but we learned that it

1http://socialhabit.com.
2http://www.kddcup2012.org/c/kddcup2012-track1.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://www.kddcup2012.org/c/kddcup2012-track1.

Effective Social Graph Deanonymization 49:3

might be sometime before October 12, 2011, according to the time stamps contained in
the dataset. Ideally, an adversary can crawl the original social graph on Tencent Weibo
website and match that with the public dataset. However, during the time before data
release (February, 2012), it was unclear to what extent the graph has evolved, rendering
such a matching nontrival. In addition, according to another recent report,3 Tencent
Weibo has over 540 million users by the end of 2012. That means, although the Tencent
Weibo data is public, an adversary still has very limited knowledge for carrying out
attacks due to the high crawling and computational costs. Actually, we have crawled
20 million user profiles during November and December in 2012, but only found a few
dozen uniquely matched profiles. After manually checking, we found these profiles are
not contained in the public dataset. That means, the auxiliary information could be
partial and noisy, even if it is obtained from the same source as the target.

To the best of our knowledge, there are two major approaches toward the problem
of deanonymizing social graphs. In the first approach, deanonymization is considered
as a seeded graph matching problem. The matching starts with a small number of
seed mappings. Such mappings are propagated recursively along edges to match other
nodes [Narayanan and Shmatikov 2009; Yartseva and Grossglauser 2013]. This ap-
proach is usually a good choice for deanonymization when high quality seed mappings
are available, and it has been successfully applied to many real-world deanonymiza-
tion problems [Narayanan and Shmatikov 2009; Narayanan et al. 2011]. However,
the success of attacks highly depends on the number and quality of seed mappings
[Narayanan and Shmatikov 2009] (Section 6.2.5). Our main concern lies on the feasi-
bility and quality of seed mappings.

First, in a practical attack, it could be unclear how the seed mappings are collected.
A common method for seed selection is detecting cliques or nontrivial subgraphs. It has
been shown that this method is not guaranteed to always work in more general sce-
narios [Zhang et al. 2014]. Narayanan et al. [2011] also suggested that it was unclear
whether the aforementioned method is feasible, provided that how much the social
graph had evolved over time was unknown. They proposed a simulated annealing al-
gorithm for seed identification, but the success of it appeared to rely on the rough
but obvious correspondence between certain kinds of nodes (e.g., high in-degree). We
argue that such a correspondence does not always exist, and we have shown that it is
sensitive to the type of graphs and applied anonymization algorithms (Section 6.2.5).
Second, there is no guarantee on the number or quality of seed mappings. It has been
shown that there is not a one-size-fits-all method for seed identification, and the out-
come is sensitive to the size and the type of social graphs [Gulyas and Imre 2014].
Gulyas and Imre also showed that the chosen seed selection method can significantly
influence and limit the possible outcome of the propagation. Significant differences
emerged even in the same or in structurally divergent networks. Due to the preceding
concerns, we believe that avoiding the reliance on seed mappings would reduce the ef-
fort of conducting an effective deanonymization attack and allow the deanonymization
attack to be successful in more general scenarios.

The second approach does not require any seed mappings and is based on particular
node signatures. Early works of this approach [Backstrom et al. 2007; Hay et al. 2008]
require an exact matching of signatures, for example, node degrees and subgraphs.
When the graph structure is modified by anonymization, those methods would fail.
On the other hand, methods based on structural features [Henderson et al. 2011],
descriptive information [Korayem and Crandall 2013], or node similarities [Jeh and
Widom 2002; Blondel et al. 2004] are robust to structural modifications but suffer from
the problem of low accuracy. In order to overcome the difficulty in collecting sufficient
seed mappings of high quality, we explored the feasibility of avoiding seed mappings

3http://www.techinasia.com/tencentweibo-registered-users-540-million.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://www.techinasia.com/tencentweibo-registered-users-540-million.

49:4 H. Fu et al.

in our previous work [Fu et al. 2014]. It turns out that our approach is robust and
effective for social graphs of different sizes and types. As a result, we believe our choice
of approach is proper to study the deanonymization risk of social graphs. A detailed
discussion of existing works is presented in Section 2.

In this article, we focus on our previous approach and conduct a detailed study on
the problem of deanonymization with graphs that are noisy or anonymized by a certain
algorithm. As descriptive information such as user profiles is usually available in a
practical attack, we are also interested in incorporating such information with the
graph structure to boost deanonymization.

In summary, we made the following contributions in this article:

—We proposed a graph node similarity measurement and a deanonymization algo-
rithm in consideration with both graph structure (Section 4) and descriptive infor-
mation (Section 5) without the use of seed mappings. We must emphasize that it
was nontrivial to seek for such a simple but effective algorithm. Actually, we have
won the deanonymization track of WSDM 2013 Data Challenge4,5 with the proposed
algorithm.

—Using the proposed algorithm, we evaluated the privacy risks of several typical
anonymization algorithms (Section 6) on four real datasets, a coauthor graph from
Microsoft Academic Search (8,248 nodes), a friendship graph from LiveJournal
(10,000 nodes), a communication graph from the Enron email dataset (8,678 nodes),
and a social graph from Tencent Weibo (2.3 million nodes).

—We found that a node is always the most similar to itself in the sense of the proposed
similarity measurement, and the maximum similarity score is actually the graph
node’s eigenvector centrality in certain situations (Section 4.2). Experimental results
show that important nodes (in terms of eigenvector centrality) are more likely to be
reidentified (Section 6.2).

—We found that combining descriptive information and graph structure boosts the
accuracy of deanonymization significantly. It was also revealed that descriptive in-
formation, when presented, plays a more important role than graph structure in
deanonymization, even if the information is inaccurate (Section 6.3).

To the best of our knowledge, no previous work has explored the preceding problems
to such extent. We believe these discoveries are of great importance, since new concerns
to protect the privacy in graph data are raised based on them, and they may motivate
future works in this line of research.

2. RELATED WORK

2.1. Anonymization

In a survey by Wu et al. [2010c], existing anonymization methods that modify the graph
structure are categorized as k-anonymity, randomization, and clustering.

The concept of k-anonymity refers to the property that a node is indistinguishable
from at least k − 1 other nodes in terms of certain types of patterns. Liu and Terzi
[2008] suggested that an adversary can breach privacy by collecting and matching node
degrees, since node degrees in a real-world graph are usually skewed. They illustrated
how to achieve k-degree anonymity through a sequence of edge addition (or deletion).
Tai et al. [2011] proposed the k2-degree anonymity to resist the friendship attack, where
an adversary utilizes the degrees of two connected nodes. Zhou and Pei [2008] assumed
an adversary knows one specific subgraph induced by the immediate neighbors of a

4http://www.wsdm2013.org/index.php/authors/data-challenge.
5The data challenge report (4 pages) was not published.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://www.wsdm2013.org/index.php/authors/data-challenge.

Effective Social Graph Deanonymization 49:5

target node. They proposed an algorithm that achieves k-neighborhood anonymity by
generalizing node labels and adding edges. As a stronger type of k-anonymity, Zou
et al. [2009] proposed the k-automorphism anonymity that protects privacy even if the
adversary knows any subgraph around a certain node. Wu et al. [2010a] proposed a
similar approach named k-symmetry. Cheng et al. [2010] proposed the k-isomorphism
algorithm that guarantees that, in addition to the node k-anonymity, the adversary
cannot even infer the existence of an edge between two nodes. These methods can be
seen as some kind of “ultimate” solutions, since they guarantee resistance against any
kind of structural attack. However, they seem to overkill since too many modifications
are required. For example, the k-automorphism needs to add about 70% new edges to
a coauthor graph in database and theory conferences, according to the results in Zou
et al. [2009].

Randomization protects privacy in a probabilistic manner and does not guarantee
any level of anonymity. Bonchi et al. [2011] described the sparsification and the per-
turbation approaches. The sparsification approach randomly deletes edges, and the
perturbation approach randomly deletes and adds the same number of edges. The
switching approach randomly switches a specified number of pairs of existing edges,
thus the degree of each node is preserved. Ying and Wu [2008] suggested that a graph’s
spectrum is related to several important graph metrics, and proposed a randomization
algorithm that can preserve a graph’s spectrum. Beyond randomizing the graph struc-
ture, Wu et al. [2010b] considered a low-rank approximation approach to reconstruct
a graph from the anonymized one to obtain more accurate feature values. Several
works focused on the problem of link privacy in the randomization approach. Ying and
Wu [2009] considered an algorithm that is expected to better preserve prescribed fea-
tures by following given constraints in the process of switching edges. The link privacy
risks of the algorithm were also analyzed. An edge randomization algorithm based on
random walks was proposed by Mittal et al. [2013] to avoid link disclosure.

The last category works in a very different manner compared with k-anonymity and
randomization. Clustering methods group nodes and edges into partitions, and usually
generalize attributes. Since only the size and density of the partitions are published,
an adversary is unable to distinguish any individual in a partition [Zheleva and Getoor
2008; Cormode et al. 2008; Campan and Truta 2009; Tassa and Cohen 2013]. In this
article, we are interested in the first two types of approaches.

In recent years, the notion of differential privacy [Dwork 2006] has attracted much
attention. Differential privacy provides a certain privacy guarantee of the data release
mechanism in a statistical database. For example, the presence or absence of any
individual item in a dataset would not affect the output of a differentially private
algorithm significantly. A number of recent studies [Hay et al. 2010; Sala et al. 2011;
Karwa et al. 2011] focus on the differential privacy in graphs. The problem of attacking
those methods is essentially different from what we are considering in this article, since
they are mainly designed to enable specific kinds of analyses by providing statistical
information or synthetic graphs.

2.2. Deanonymization

Backstrom et al. [2007] proposed a family of deanonymization methods, including
the active attack and the passive attack, which make it possible for an adversary to
learn whether edges exist or not between two specified nodes. However, the methods
only work for naive anonymization and is infeasible once the graph is modified before
publishing.

Narayanan and Shmatikov [2009] proposed a deanonymization algorithm that rei-
dentifies nodes using only structural information of a different social graph. The algo-
rithm starts with a few seed mappings and propagates the mappings through edges. As

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:6 H. Fu et al.

the previous mappings might be wrong, it then propagates back to correct those map-
pings. The algorithm was shown by experiments to be effective in deanonymization.
However, the authors suggested that a successful attack relies heavily on the quality
of seed mappings. Narayanan et al. [2011] later suggested that it was unclear whether
the clique search technique is feasible, provided that how much the social graph had
evolved over time was unknown. They then proposed an algorithm for seed identifica-
tion based on simulated annealing. The success of the proposed algorithm appeared
to rely on the rough but obvious correspondence between certain kinds of nodes (e.g.,
high in-degree).

Even when collecting seed mappings is feasible in an attack, there is no guarantee
on the number or the quality of the mappings. For example, the simulated annealing
algorithm proposed in Narayanan et al. [2011] succeeded in providing high quality
seed mappings in a naively anonymized Flickr graph, but our experimental results
(Section 6.2.5) showed that its accuracy was unsatisfactory when the graph was mod-
ified by a particular anonymization algorithm. Choosing the proper method for seed
identification could also be problematic. Gulyas and Imre [2014] evaluated multiple
seed identification methods on various types of social graphs. Their results showed that
the choice of seed identification method depended on the size and type of the graph,
and it could significantly influence and limit the possible outcome of the propagation.
In this article, we intend to study the privacy risks of several typical anonymization
algorithms, so developing a robust deanonymization algorithm without seed mappings
is more appropriate.

A number of works on privacy risks related to attribute disclosure were also con-
ducted. Mislove et al. [2010] showed that certain types of attributes are highly related
to the graph’s community structure, and a user’s descriptive information can thus be
inferred. Gundecha et al. [2011] investigated the privacy risks about vulnerable friends
by introducing a set of privacy measurements based attributes. Although we focus on
the problem of identity disclosure instead of attribute disclosure, privacy issues about
attributes were also studied. In addition, several works attempting to model the privacy
risk in social graphs were also conducted [Pedarsani and Grossglauser 2011; Zhang
et al. 2014].

2.3. Node Similarity

Several recent works investigate the privacy risks in social graphs by exploiting
structure similarities. Henderson et al. [2011] proposed a family of structural fea-
tures by aggregating features from neighboring nodes recursively. Deanonymization
of nodes is achieved by comparing the Euclidean distance of feature vectors. However,
their method appears only able to reduce a certain fraction of guesses required to
find the real identity. The link prediction problem focuses on the evolution of social
graphs and is to predict the existence of a link in the future. Several proximity mea-
sures were shown to be effective for the link prediction problem [Liben-Nowell and
Kleinberg 2003]. Ying and Wu [2011] illustrated that the proximity measures could
also be exploited to predict the existence of sensitive links.

There are a number of works on graph node similarity for purposes other than
deanonymization in literature. Blondel et al. [2004] proposed a graph node similar-
ity measurement that is calculated iteratively by summing up the similarity scores
between the neighbors of two nodes. The “SimRank” proposed by Jeh and Widom
[2002] compares nodes in the same graph, so it is infeasible for deanonymization (in
which two graphs are compared). Melink et al. [2002] proposed a general framework of
graph node similarity named “Similarity Flooding,” which takes graph structure, node,
and edge attributes into consideration, and can be viewed as a generalization of the
preceding two measurements. In our initial experiments, we evaluated the preceding

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:7

measurements, and found empirically that they are not suitable for deanonymization
(Section 4.2), so we decided to find a new node similarity measurement that is effective
in deanonymization.

3. PRELIMINARIES

Social Graphs. Two models for social networks are described in Wu et al. [2010c]. A
simple graph is an undirected graph G = (V, E) without any descriptive information.
Nodes in V correspond to users, and an edge (i, j) ∈ E indicates there is a social tie
between users i and j.

A rich graph is the combination of a directed or undirected graph, and two attribute
sets X and Y . User i’s descriptive information (or node attribute) is denoted as X(i),
and the description of a social tie (i, j) (or edge attribute) is represented as Y (i, j).
For example, if a user’s profile contains fields such as name, gender, and birth year,
the corresponding X(i) may look like {Alice, female, 1990}. If user i marks user j as
a “friend” and has sent the friend five messages, the edge attributes Y (i, j) can be
represented as {friend, 5}.

Data Publishing. We refer to the published social graph as the target graph. In order
to preserve privacy, social graphs are anonymized before publishing. The anonymiza-
tion usually involves modification of a graph’s structure and attributes, and can be
summarized in two steps:

(1) Modify the original social graph with a certain anonymization algorithm, for ex-
ample, algorithms that achieve some kind of k-anonymity, or randomization.

(2) Assign new random identifiers to nodes.

Threat Model. It is commonly assumed that an adversary knows some kind of prior
knowledge about the target nodes. The adversary can then use the knowledge to locate
the target nodes in the anonymized social graph. We assume that an adversary can
always collect a subgraph around target nodes. The collected graph, in which the real
identities of nodes are known, is referred to as the auxiliary graph. This assumption is
practical because online social networking sites are usually partially or fully accessible.
Note that this is the only prior knowledge: The adversary does not know the real
identity, or seed mapping, of any node in the target graph.

Problem Formulation. Given an auxiliary graph G1 = (V1, E1) and a target graph
G2 = (V2, E2), the goal of deanonymization is to find identity disclosures in the form of
1-1 mappings as many and accurate as possible. An identity disclosure (i, j) indicates
that the two nodes i ∈ V1 and j ∈ V2 actually correspond to the same user.

4. DEANONYMIZING SIMPLE GRAPHS

Most anonymization algorithms for simple graphs achieve their anonymization goals
by adding and/or deleting edges. For algorithms where either edge addition or deletion
is involved, the anonymized or the original graph is subisomorphic to the other. In
theory, the graph can be perfectly deanonymized by solving the subgraph isomorphism
problem. However, as the subgraph isomorphism problem is known to be NP-complete
[Cook 1971], this approach is infeasible for large-scale graphs. Once both edge addition
and deletion are involved, the problem becomes complicated and the subisomorphism
no longer holds. The basic assumption in this article is that the published graph is
“similar” to the original graph, otherwise the data utility will be low. Motivated by
this assumption, we propose a measurement for node similarity with respect to the
graph structure. We then introduce a heuristic to produce node mappings as the final
output for deanonymization. Finally, we discuss the relation between node similarity

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:8 H. Fu et al.

and privacy risks. Different from Narayanan and Shmatikov [2009], no initial seed
mapping is required in our approach.

4.1. Node Similarity

Suppose we are trying to compare graphs G1 = (V1, E1) and G2 = (V2, E2). Although
swapping the two graphs will not change the output, we still prefer to denote the
auxiliary graph as G1 and the target graph as G2. For nodes i ∈ V1 and j ∈ V2, we
introduce the node similarity score S(i, j) as a structural measurement of how similar
the two nodes are. In order to make the measurement effective for deanonymization,
the following properties are required:

(1) If a graph is compared to itself, every node should be the most similar to itself. This
property is naturally required by most similarity measurements but lacked by the
measurements mentioned in Section 2.

(2) Two nodes are as similar as their neighbors are. This intuitive property is commonly
assumed by all the node similarity measures we investigated earlier.

Based on the preceding requirements, we propose our definition of the node similarity.
Denoting i’s neighbor nodes as N1(i) and j’s neighbor nodes as N2(j), we try to match
similar nodes in N1(i) and N2(j) in an effort to maximize the overall similarity score.
The similarity score S(i, j) is then assigned with such an overall score.

The idea of matching neighbors follows the following intuition. We first assume the
node similarity scores between N1(i) and N2(j), that is, {S(i′, j ′)|(i′, j ′) ∈ N1(i) × N2(j)},
are precalculated. If i and j indeed correspond to the same identity, their neighbors
N1(i) and N2(j) should “fit” to each other in the sense of a pairwise correspondence.
In other words, we should be able to find a unique corresponding node j ′ in N2(j) for
every node i′ in N1(i) or vice versa, so that i′ and j ′ correspond to the same identity.
We quantify the “fitness” of N1(i) and N2(j) as the maximum sum of similarity scores
between matched nodes, and take it as the similarity score S(i, j). A high value of
S(i, j) indicates a possible correspondence between N1(i) and N2(j), while a low value
suggests that the neighbors may be not similar.

According to the preceding definition, S(i, j) depends on the similarity scores between
N1(i) and N2(j), but the latter also depends on the former. We handle the recursive defi-
nition in a recursive way: We update the similarity scores iteratively until a fixed point
is reached (see Algorithm 1 for pseudocode). Because the similarity score is calculated
by matching neighbors, we refer to the deanonymization algorithm as NeighborMatch.

The NeighborMatch algorithm is iterative and updates S(i, j) in each iteration. First,
the initial values are taken as S (0)(i, j) = 1. In the kth iteration, the algorithm starts
matching i’s neighbor nodes N1(i) and j’s neighbor nodes N2(j) by constructing a
complete bipartite graph B(k+1)

i, j = (N1(i), N2(j), N1(i) × N2(j)), where each edge (i′, j ′)
is weighted as S (k)(i′, j ′). The MaxMatch procedure is then invoked to find the maximum
weighted match of B(k+1)

i, j . We denote the set of matched edges as �
(k+1)
i, j . An edge (i′, j ′) in

�
(k+1)
i, j indicates that i′ ∈ N1(i) is matched to j ′ ∈ N2(j). Finally, S (k+1)(i, j) is calculated

as the sum of matched neighbors’ similarity scores:

S (k+1)(i, j) =
∑

(i′, j ′)∈�
(k+1)
i, j

S (k)(i′, j ′) (1)

The optimal match �
(k+1)
i, j is recalculated in every iteration based on the node similarity

scores S (k). The preceding procedure is repeated until the normalized scores converge.
The normalization is done by dividing S (k) by the maximum S (k)(i, j). The convergence

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:9

ALGORITHM 1: The NeighborMatch algorithm
Input : Auxiliary graph G1, target graph G2, number of expected mappings M
Output: Identity disclosures in the form of 1-1 mappings

1 foreach (i, j) ∈ V1 × V2 do
2 S (0)(i, j) ← 1;

3 k ← 1;
4 repeat
5 foreach (i, j) ∈ V1 × V2 do
6 B(k+1)

i, j ← (N1(i), N2(j), N1(i) × N2(j)) where w(i′, j ′) = S (k)(i′, j ′);
7 �(k+1)

i, j ← MaxMatch(B(k+1)
i, j);

8 S (k+1)(i, j) ← ∑
(i′, j′)∈�

(k+1)
i, j

S (k)(i′, j ′);

9 k ← k + 1;
10 until normalized S (k) converges;
11 B ← (V1, V2, V1 × V2) where w(i, j) = S (k)(i, j);
12 � ← MaxMatch(B);
13 return (top M mappings in � with largest scores);

of Algorithm 1 is analyzed in Appendix A. As the diameter of a social graph is usually
small, we found it unnecessary to repeat the iteration for many times, so we set the
number of iterations to five in experiments.

We now introduce our approach to obtain identity disclosures. We regard the identity
disclosures in the form of 1-1 mappings. Basically, we try to match V1 and V2 by
maximizing the overall similarity score. Specifically, a complete bipartite graph B =
(V1, V2, V1 × V2) is constructed by weighting edge (i, j) ∈ V1 × V2 with similarity score
S(i, j). The match � that reveals the real identities of users is taken as the maximum
weighted matching of B. The algorithm outputs the top M node mappings in � in the
sense of node similarity score, since node pairs with a higher similarity score are more
likely to be correct.

In addition, methods to produce identity disclosure are not limited to the proposed
approach. For example, a ranking of candidates for each node can be produced by
sorting the candidates’ similarity scores. The adversary can later check top candidates
manually by comparing the profiles with domain knowledge.

To the best of our knowledge, the maximum weighted bipartite matching problem
can be solved by the Hungarian algorithm in O(n3) time [Kuhn 1955]. The overall
running time of a single iteration is then O(|V1||V2|d3), where d is the upper bound
of node degrees. The running time can be reduced to O(|V1||V2|d2 log d) by utilizing a
greedy approximation algorithm instead: the edges of the bipartite graph are added to
the matching one by one in descending order of weight. We found empirically that this
approximation works better than expected in our algorithm.

4.2. Privacy Risk

We conduct a study on the relation between privacy risks and the proposed node
similarity. For the sake of simplicity, we assume that G2 has the same labeling as G1
for nodes that appear in both graphs, that is, node i ∈ V1 corresponds to i ∈ V2. We start
with the case where G1 is a subgraph of G2. We define the similarity score between node
i and its real image as the self-similarity score T (i) = S(i, i). We study the property of
T (i) and find

THEOREM 4.1. A node is always among the most similar candidates to itself, that is,
T (k)(i) ≥ S (k)(i, j) for any nodes i ∈ V1, j ∈ V2.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:10 H. Fu et al.

PROOF. Theorem 4.1 is proved by induction. For the base case of induction, we need
to prove T (k)(i) ≥ S (k)(i, j) for k = 0. As S (0)(i, j) equals 1, the claim holds in this case.
For k ≥ 0, we assume the claim is true for k. Consider the edge weight of bipartite
graph B(k+1)

i, j in the (k + 1)th iteration. The assumption indicates edge (i′, i′) has the
maximum weight among {(i′, j ′)| j ′ ∈ N2(j)}, so one of the optimal matches for T (k)(i)
is �

(k+1)
i,i = {(i′, i′)|i′ ∈ N1(i)}. As all optimal matches have the same overall scores, the

updated self-similarity score is

T (k+1)(i) =
∑

i′∈N1(i)

S (k)(i′, i′)

=
∑

i′∈N1(i)

T (k)(i′). (2)

Based on the fact that only a subset of N1(i) is matched with regard to N2(j), we can
then derive

S (k+1)(i, j) =
∑

(i′, j ′)∈�
(k+1)
i, j

S (k)(i′, j ′)

≤
∑

(i′, j ′)∈�
(k+1)
i, j

T (k)(i′)

≤
∑

i′∈N1(i)

T (k)(i′)

= T (k+1)(i).

Theorem 4.1 shows that S(i, j) is bounded by T (i). The following theorem further
explains what T really is.

THEOREM 4.2. The self-similarity score T is the principal eigenvector of G1’s adjacency
matrix.

PROOF. (Sketch) The updating rule of self-similarity scores in Equation (2) can be
rearranged in the matrix form T (k+1) = A1T (k), where A1 is the adjacency matrix of G1.
It is identical to the power iteration algorithm that solves the principal eigenvector of
a matrix, except for the scaling factor for normalization, so normalized T (k) converges
to A1’s principal eigenvector.

We now proceed to the general case where G1 and G2 have arbitrary overlap. The
auxiliary graph G1 is regarded as the combination of a subgraph G′

1 = (V1 ∩V2, E1 ∩ E2)
of G2 and additional noise N = (V1−V2, E1−E2). The noise N is caused by (1) the modifi-
cations that are made by anonymization algorithms and (2) extra nodes and edges that
are involved during the process of collecting auxiliary graph. With the existence of the
noise N, Theorems 4.1 and 4.2 no longer hold, and it is possible that T (k)(i) < S (k)(i, j)
for some i �= j. In addition, we find empirically that this usually happens when i’s
and j’s corresponding values in the principal eigenvector are close to each other. In this
case, we are unable to identify the real image of node i only by examining the similarity
scores, so we perform a bipartite matching between V1 and V2 to maximize the overall
similarity score, since each node is supposed to have at most one image. However, this
method could still not distinguish them if there are reasonably many such nodes. The
preceding discussions motivate a possible anonymization approach against our attack
that modifies the graph structure so that the value of every node is close to (e.g., less
than a threshold) a sufficient number of other values in the principal eigenvector.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:11

Recall the properties required by deanonymization in Section 4.1. The first property
is proven to be satisfied directly by Theorem 4.1, and apparently the second property is
also satisfied. For the node similarity measurements mentioned in Section 2, the first
property is not guaranteed to be satisfied, since one can easily construct graphs where
some nodes are less similar to themselves than the other nodes. As a consequence,
they failed to provide reasonably accurate results for deanonymization. For example,
the node similarity proposed by Blondel et al. [2004] can only identify less than 2%
nodes in a coauthor graph from Microsoft Academic Search, once the graph is modified
by any of the anonymization algorithms listed in Section 6.1.2. Only when the graph
structure is not modified at all (naive anonymization), the measurement could identify
about 45% nodes. We also obtained a similar result for “Similarity Flooding” [Melnik
et al. 2002].

5. DEANONYMIZING RICH GRAPHS

In order to incorporate graph structure and attributes for deanonymization, we extend
the algorithm described in Section 4 to process directed or undirected rich graphs.
We start by introducing a framework of attribute similarity measurement, and then
modify the updating rule of node similarity score to utilize attribute information.

5.1. Attribute Similarity

The node-attribute similarity SX(i, j) represents the similarity between node-attribute
sets X(i) and X(j). Analogously, the edge-attribute similarity SY (i1, j1, i2, j2) measures
how similar edge-attribute sets Y (i1, j1) and Y (i2, j2) are. We assume that both mea-
surements range from 0 to 1 inclusively and two attribute sets are more similar if
the corresponding similarity score is larger, for example, value 0 indicates completely
different and 1 suggests possible equivalence.

In a directed graph, there could be two edges of opposite directions between two
specific nodes. In order to combine the information of the two edges, we introduce
the concept of relation, which is an ordered nodes pair. Relation (i1, j1) being similar
to (i2, j2) does not necessarily mean that it is similar to (j2, i2). We then propose the
relation similarity SR(i1, j1, i2, j2), which measures the similarity of relations (i1, j1)
and (i2, j2) in conjunction with edges, for example, as the average of edge-attribute
similarities SY (i1, j1, i2, j2) and SY (j1, i1, j2, i2). Again, determining the exact definition
of relation similarity is nontrivial, so we only assume that it ranges from 0 to 1 and
relies on edge-attribute similarity.

Generally, determining the exact definition of similarity measurement can be consid-
ered as a binary classification problem. Given a pair of nodes (or edges), the classifier
is required to infer whether they correspond to the same identity. In this sense, a su-
pervised learning approach can be adopted to incorporate all types of attributes for
inference [Korayem and Crandall 2013]. When the ground truth for training is infeasi-
ble to collect, the adversary may need some heuristics based on the comprehension and
domain knowledge of the attributes. Herein, we discuss general ideas of the heuristics
based on our initial experiments. A concrete example is presented in Section 6.3.1.

For a binary or categorical attribute, it is usually fine to define the similarity as 1
for equal values, or 0 for inequality. For example, suppose the adversary has learned
that a target user lives in Beijing. She may define the attribute similarity as 1 if the
other user also lives in Beijing, or 0 if the latter lives in other cities. In cases where
the location is less specific, for example, the other user is only known to live in China,
an intermediate value could be assigned. For a numeric attribute, the similarity can
be determined based on the distribution of its value. If the adversary knows that a
user was born in 1980s, she may regard only the users who were also born in 1980s
as candidates. In cases where little is known about the distribution, we find that

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:12 H. Fu et al.

measuring the relative difference (r(x, y) = min{x, y}/ max{x, y}) is usually a good
choice for nonnegative values.

For a given pair of sets that contain multiple attributes, we tried several choices
to combine the similarity of individual pairs of attributes. It turns out taking the
average yields the best performance. For the relation similarity, taking the average of
edge-attribute similarities also seems to be a good choice.

Despite the preceding intuition, we must emphasize that a good attribute similarity
measurement depends on the domain knowledge of the attributes. More sophisticated
methods [Henderson et al. 2011] are surely preferred for deanonymization.

Basically, we try to utilize the attribute information of graphs by introducing the
preceding similarity measurements. SX and SY are supposed to measure the similar-
ity of nodes and edges with respect to attributes. SR is proposed for combining the
information of opposite edges between a node pair in a directed graph. The way these
similarity scores are calculated depends on the adversary’s comprehension and domain
knowledge of the graph.

5.2. Generalized Node Similarity

Given a pair of rich graphs G1 = (V1, E1) and G2 = (V2, E2), we still use the nota-
tion S(i, j) to represent the generalized similarity score of node i ∈ V1 and j ∈ V2,
while additional attribute information is considered. The idea of neighbor matching
is generalized to adopt attribute information. Two nodes are considered similar if (a)
their attributes are similar, (b) their neighbors are similar, and (c) their relations with
neighbors are similar.

In a directed graph, two nodes are considered to be adjacent if there is an edge
between them, regardless of the edge’s direction. The neighbor set notations N1(i) and
N2(j) are generalized by regarding adjacent nodes as neighbors. In the kth iteration, a
bipartite graph B(k+1)

i, j = (N1(i), N2(j), N1(i) × N2(j)) is constructed by weighting edge
(i′, j ′) ∈ N1(i) × N2(j) as S (k)(i′, j ′)SR(i, i′, j, j ′). Denoting the maximum matching as
�

(k+1)
i, j , the generalized node similarity is calculated iteratively as

S (k+1)(i, j) = α ·
∑

(i′, j ′)∈�
(k+1)
i, j

S (k)(i′, j ′)SR(i, i′, j, j ′) + SX(i, j). (3)

The constant factor α trades off the importance of node attribute against graph struc-
ture and edge attribute. The initial values are taken as S (0)(i, j) = SX(i, j). The identity
disclosures are obtained in exactly the same manner as described in Section 4.1.

Suppose G1 is obtained by removing the nodes and edges from G2 without attribute
perturbation. It can be proven analogously, as in Section 4.2, that Theorem 4.1 still
holds in this case (see Appendix B), so the generalized node similarity score still guar-
antees that a node is always one of the most similar candidates to itself in this case.

The original versions of the proposed algorithms require one to consider |V1||V2| pairs
of nodes, and they are surely not scalable. To solve this problem, we propose a pruning
strategy to reduce the number of node pairs in consideration.

We refer to a node pair (i, j) as a candidate pair, where i ∈ V1 and j ∈ V2, and the
similarity score of the candidate pair is S(i, j). We introduce a heuristic that limits the
number of candidate pairs to enhance the scalability of the proposed algorithm with a
little cost of accuracy. We find empirically that only a few candidate pairs have signif-
icantly large similarity scores and tend to be correct mappings, while candidate pairs
with small similarity scores are very likely to be incorrect. This observation implies
that we may simply maintain the top K candidate pairs with largest similarity scores
in a set C during the algorithm process, and update only their similarity scores. For

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:13

simple graphs, the initial set C can be obtained by searching for similar nodes in the
sense of node features such as node degrees [Hay et al. 2008], clustering coefficients
[Watts and Strogatz 1998], centralities [Bonacich 1987], and recursive structural fea-
tures proposed in Henderson et al. [2011]. Previous works of Hay et al. [2008] and
Henderson et al. [2011] have shown that structural features can be used to prune
a large fraction of candidate pairs at a reasonably good accuracy. With less remain-
ing candidate pairs, our algorithm can scale for larger social graphs. For rich graphs,
additional attribute information can be combined with structural features to obtain
a smaller C. While more sophisticated methods, for example, Korayem and Crandall
[2013], can yield better performance, our experiments (Section 6.3) showed that even
simply filtering by node attributes is sufficiently effective.

Assume the times required by comparing node-attribute sets and edge-attribute
sets are O(tX) and O(tY), respectively. In a single iteration of the original algorithm,
|V1||V2| pairs of node-attribute sets are compared. For a particular pair of nodes, at
most d2 pairs of edge-attribute sets are compared to construct the bipartite graph.
Therefore, the original algorithm requires O(|V1||V2|(tX + d2tY + d2 log d)) time for a
single iteration. After applying the preceding heuristic, the running time is reduced to
O(K(tX + d2

c tY + d2
c log dc)). The space requirement for similarity scores is reduced to

O(K), where dc denotes the upper bound of the node degree that is counted only with
respect to the nodes in C.

6. EXPERIMENTS

In this section, we start by introducing experiment settings, for example, the datasets,
anonymization algorithms to be attacked, graph extraction algorithms, and evaluation
criteria. We then evaluate the performance of the proposed algorithm on both simple
graphs and rich graphs in various scenarios. Finally, we present empirical results about
the relation between privacy risk and the eigenvector centrality.

6.1. Experiment Settings

6.1.1. Dataset. We used four public datasets for evaluation: a coauthor graph from
Microsoft Academic Search (msas), a friendship graph from LiveJournal (lj), the En-
ron email dataset (enron), and user profile and relationship data from Tencent Weibo
(tweibo).

The msas graph was published in WSDM 2013 Data Challenge. It was extracted
from a snapshot (May 18, 2012) of the Microsoft Academic Search database. The graph
is undirected, consists of 8,248 nodes and 18,732 edges, and does not contain any
attribute. Every node corresponds to an author in the database. Two authors are linked
by a single edge only if they have collaborated on at least one paper.

The lj dataset was analyzed in Yang and Leskovec [2012] and published at
http://snap.stanford.edu/data/. The nodes correspond to users and the edges repre-
sent friendship between users. The original dataset contains about 4 million nodes.
We randomly extracted a subgraph containing 10,000 nodes and 72,831 edges for our
evaluation.

The enron dataset is derived from emails sent from and to managers in Enron
Corporation, and it is available at http://www.cs.cmu.edu/∼enron/. We regarded unique
email addresses as nodes. An edge was added between two nodes if they have exchanged
at least one pair of emails. The resulting graph contains 8,678 nodes and 29,400 edges.

The tweibo dataset was published in KDD Cup 2012 and contains a social graph
and recommendation records. The dataset was naively anonymized, that is, all key
words and user identifiers were replaced by random unique numbers, but attributes
like gender and birth year were preserved as they were. We model the tweibo dataset
as a directed graph. The nodes correspond to user profiles, and the directed edges

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://snap.stanford.edu/data/
http://www.cs.cmu.edu/protect $elax sim $enron/

49:14 H. Fu et al.

describe the relation between two users. An edge (i, j) is described by a set of attributes,
including whether user i is following user j, how many times j is mentioned in i’s
tweets, how many times i has retweeted j’s tweets, and the number of comments that i
has sent to j. In total, 2.3 million nodes and 55.4 million directed edges were extracted
from the dataset.

6.1.2. Anonymization. In our experiments, we chose the following typical algorithms to
generate anonymized target graphs.

Naive Anonymization. The naive approach simply shuffles the identifiers of nodes,
and leaves the structure as it was. Since this is the simplest approach, we would
expect the best deanonymization result for this approach.

k-Degree Anonymity(k). For every node i in the anonymized graph, the k-degree
anonymity requires that there are at least k − 1 other nodes of the same degrees
with i. We implemented two versions of the algorithms proposed by Liu and Terzi
[2008]: the one that only adds edges, and the one that adds and deletes edges
simultaneously.

Sparsification(p). The sparsification approach removes p|E| edges randomly, where
the parameter p controls the level of anonymization.

Perturbation(p). The perturbation approach first removes edges in exactly the same
way as the sparsification does, and then adds false edges until the number of
edges of the anonymized graph is the same as the original graph. This approach
can be viewed as a kind of simulation of social graph evolution, or “unintended”
anonymization.

Switching(p). The switching approach randomly selects two edges (i1, j1) and (i2, j2),
provided that (i1, j2) and (i2, j1) are not in the graph. The selected edges are then
“switched,” that is, (i1, j1) and (i2, j2) are deleted, and (i1, j2) and (i2, j1) are added
to the graph. Such procedure is repeated p|E|/2 times, resulting in p|E| edge
additions and p|E| edge deletions.

Spectrum Preserving(p). Ying and Wu [2008] proposed two spectrum preserving
randomization algorithms that can be viewed as variants of random perturbation
and switching, and they were shown to keep better data utility. We implemented
the two algorithms and used parameter p to control the number of modifications
as earlier.

The change of attributes in rich graphs (tweibo) was simulated by randomization.
For each node or edge in the target graph, we perturbed a field in its attribute set
independently with a probability t as follows:

Following. As it was binary, the value was simply flipped.
Gender. The gender was chosen arbitrarily between male and female if the original

value was unknown, or it was changed to unknown if it was originally known.
Birth Year. The birth year was assigned with an arbitrary value from 1900 to 2000.
Other Numeric Attributes. The new value of numeric attributes such as the number

of tweets, comments, etc., was chosen arbitrarily in range [x − xt, x + xt], provided
that the original value was x.

6.1.3. Graph Extraction. The test data were generated from the original graph (msas, lj,
enron, or tweibo) by extracting subgraphs. For a certain experiment setting, a pair of
graphs G1 = (V1, E1) and G2 = (V2, E2) with specified overlap were extracted from the
original graph. We took G1 as the auxiliary graph and G2 as the target graph. Copies
of G2 were anonymized with different combinations of algorithms and parameters.

We defined the node overlap as βV = |V1 ∩ V2|/|V1 ∪ V2|. Given βV , V1’s desired size
n1, and the original graph G = (V, E), we first extracted a subgraph GO = (VO, EO) of
size βV |V | from G, using the Breadth-First Search (BFS), which is a strategy in online

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:15

social network crawling. The other |V | − |VO| nodes were randomly partitioned into
two groups of size n1 − |VO| and |V | − n1, respectively. The node sets V1 and V2 were
then obtained by combining the corresponding groups with VO. Finally, G1 and G2 were
obtained by projecting G on V1 and V2.

6.1.4. Evaluation Criteria. We measured how successful an attack is by its precision and
recall. The precision was defined as the proportion of correctly matched nodes among all
matched nodes, and the recall was defined as the proportion of correctly matched nodes
among all overlapping nodes of G1 and G2. To save space, in most of our experiments, we
only reported the precision p under various M (the number of outputted mappings; see
Algorithm 1), and the recall can be then calculated as r = pM/|V1∩V2|. All experiments
were performed 10 times with independently extracted graphs.

6.2. Simple Graphs

The msas, lj, and enron graphs were used to evaluate the performance of our algorithm
on simple graphs. We started by evaluating the performance when the overlap of the
auxiliary and the target graphs varied. We then compared our algorithm with the
algorithms proposed in Narayanan et al. [2011] and Narayanan and Shmatikov [2009].
Empirical results about the relation between privacy risks and eigenvector centrality
were also reported.

6.2.1. Overlap. We assumed that the auxiliary graph G1 = (V1, E1) might have arbi-
trary overlap with the target graph G2 = (V2, E2). We generated test data by extracting
graph pairs with different overlap (25%, 50%, and 100%). Although the sizes of the aux-
iliary graph and the target graph may vary in a practical attack, we took the case where
the two graphs were equally sized for illustration, that is, each of the graphs from msas
contains 5,155, 6,186, or 8,248 nodes; 6,250, 7,500, or 10,000 nodes for the lj graph; or
5,424, 6,509, and 8,678 nodes for the enron graph, depending on the overlap. For each
graph pair, copies of G2 were sanitized with different anonymization algorithms. The
results (Figures 1, 2, and 3) showed that the precision and the recall (see Section 6.1.4)
for identity disclosure of our algorithm were reasonably high, even if the overlap was
relatively small.

Provided that the adversary knows only the degree of nodes, the k-degree anonymity
guarantees a node to be reidentified with a probability of at most 1/k. However, with
extra structure knowledge, the probability of success was increased dramatically. As
there is usually no guarantee of what kind of information that an adversary has in
practice, the result showed the potential privacy risks in such situations.

It was expected that the first few mappings that the algorithm generated were
very likely to be correct, but this appeared not true for the k-degree anonymization
algorithm, which only adds edges. Our algorithm appeared to favor large degree nodes
first, for example, about half of the first 100 mappings corresponded to the first 100
top degree nodes. As node degree in a real-world graph is usually skewed [Albert
and Barabási 2002], the degree difference between top nodes tended to be large, so
significantly more edge additions were required to achieve k-degree anonymity. Taking
the msas graph and k = 10 for example, the average degree of the top 100 nodes was
increased by 34%, while the overall degree increment was only 3%. The neighborhoods
of the top degree nodes were greatly changed, so they were difficult to be reidentified.

For a given randomization parameter p, the sparsification was the most vulnerable
to be attacked. It was not surprising, since it made the least modifications to the graph
by only deleting edges. Although the switching adds and deletes the same numbers
of edges as the perturbation, it provided less protection. We believed it is due to the
fact that it preserved node degrees. For the spectrum preserving approach, switching
also seemed to provide less protection than perturbation does. With the same number
of modifications, the spectrum preserving approach was thought to better preserve

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:16 H. Fu et al.

Fig. 1. Precision of attacks with different M (the number of mappings) and node overlap on msas graph.

the graph’s utility, but it was also shown to provide less protection than the uniform
randomization approach. For all anonymization algorithms here, increasing the level of
anonymization indeed brought more difficulty to attacks. The randomization methods
were supposed to protect privacy in a probabilistic manner, but the result showed that
the nodes could still be reidentified with high precision even if 20% of the edges were
modified.

6.2.2. Subgraph Attack. As the subgraph attack was widely studied in previous works,
we have also evaluated the performance of our algorithm on subgraph attacks. We
extracted subgraphs containing fractions of 25%, 50%, and 100% nodes of the original
graphs (2,062, 4,124, and 8,248 nodes for the msas graph; 2,169, 4,339, and 8,678 nodes
for the enron graph; or 2,500, 5,000, and 10,000 nodes for the lj graph), and anonymized
copies of the original graph with the same anonymization algorithms and parameters
to obtain the target graphs. The results showed similar accuracy and behaviors, so they
were omitted here.

6.2.3. Eigenvector Centrality. Bonacich [1987] proposed a family of centrality measure-
ments that measure the importance or influence of a node in a graph. One of them
is the eigenvector centrality, which is defined as the principal eigenvector of a graph’s
adjacency matrix. We grouped the nodes in the auxiliary graph by their normalized

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:17

Fig. 2. Precision of attacks with different M (the number of mappings) and node overlap on lj graph.

eigenvector centrality and calculated the average deanonymization precision for every
group. The ranges of bins were selected in an exponential manner to balance the num-
ber of nodes in different bins. The result (Figure 4) showed that important nodes (with
high eigenvector centrality) were more likely to be reidentified.

We studied the distribution of eigenvector centrality of the msas, lj, and enron graphs
and found that, while a few nodes had unusually high centrality, the others’ central-
ities were rather low. We also found that those nodes with high centrality were very
distinguishable from each other, since the centralities were diverse. As discussed in
Section 4.2, nodes with similar eigenvector centrality could be confused with each oth-
ers. Therefore, it was expected that nodes with larger eigenvector centrality were easier
to be reidentified.

6.2.4. Efficiency. We implemented our algorithm in C++ with multithreading. The
experiments were performed on a server equipped with an Intel Xeon X5660 CPU
(six cores, 2.8GHz), and 2GB memory was actually used. For the sake of simplicity,
we kept all |V1||V2| candidate pairs, so the time complexity of a single iteration is
O(|V1||V2|d2 log d) and the total running time is propositional to the graph size. As
mentioned in Section 4.1, we limited the number of iterations to five. Take the experi-
ment on the lj graph presented in Section 6.2.1 for example, where the auxiliary and

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:18 H. Fu et al.

Fig. 3. Precision of attacks with different M (the number of mappings) and node overlap on enron graph.

Fig. 4. Precision of identity disclosure grouped by the auxiliary graph’s normalized eigenvector centrality
(100% overlap, msas). Results for other graphs were similar.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:19

Fig. 5. Performance of NeighborMatch (NM) and NS attacks (25% overlap, msas). The curves for NM
and NS attacks are generated by varying the number of mappings (M = 100, 300, 500, 800, 1,000,

1,500, 2,000, 2,500, 3,000, 4,000, 5,000) and the quality of seed mappings (Q = 0%, 10%, . . . , 100%),
respectively. Note that the curves for NS attacks are not standard precision/recall curves due to the different
parameters for different data points. Results for other anonymization algorithms and datasets are similar
and thus omitted.

the target graphs contain 6,250, 7,500, or 10,000 nodes. The total running time for a
single attack ranged from 10 to 20 minutes.

6.2.5. Comparison. Narayanan and Shmatikov [2009] proposed a deanonymization al-
gorithm (denoted as NS) that requires a certain number of seed mappings to invoke
large-scale reidentification. Collecting seed mappings can be considered as a small-
scale deanonymization, which is not always feasible in practice. Taking the tweibo
dataset as an example, we were only able to match a few dozens of user profiles, and
the mappings were proven to be incorrect after manual checking. That means, even if
an adversary managed to collect a few seed mappings, there was no guarantee on the
quality of mappings, that is, the mappings could be incorrect.

In our experiments, we assumed an ideal situation where seed mappings were given
in advance. We generated 50 mappings by randomly sampling the overlapping nodes,
provided that their degrees were at least 10. We were interested in the impact of seed
mapping quality, so we randomly picked 0%,10%, . . . , 100% of the given mappings and
made them incorrect (by replacing one of the two nodes with an arbitrary node). We
evaluated the precision and recall of the NS algorithm in such settings, and the process
was repeated 10 times independently. We set the parameter theta in the NS algorithm
to 0.1 after trying various choices.

To compare with NS, we reported the performance of our algorithm with different
values of M (the number of outputted mappings). The result (Figure 5) showed that
for NS, both precision and recall increased as the quality of seed mappings increased.
However, its recall was low, though all seed mappings were correct (we have tried to
use more than 50 seed mappings but the result was similar). The result also showed
that only when high quality seed mappings were provided, the NS algorithm could
outperform ours. Note that this comparison is actually unfair for us, since additional
information is provided to the NS algorithm. We believe the observed differences are
mainly due to two aspects:

—Our algorithm represents the node mappings with similarity scores, while the NS
only maintains a set of discrete 1-1 mappings. Therefore, our algorithm is able to
capture more information about the graph structure.

—The NS algorithm accepts a mapping only when the two nodes are both the most
similar to each other. This constraint is so strict that the algorithm only accepts
mappings that are very certain to be correct. Therefore, it prevents the propagation

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:20 H. Fu et al.

through uncertain nodes. On the contrary, our algorithm provides more flexibility as
one may tune the parameter M to trade off between precision and recall, depending
on the application.

Narayanan et al. [2011] later proposed a graph matching algorithm based on simu-
lated annealing (denoted as SA). The algorithm was used to generate seed mappings by
matching the top n degree nodes (n ≤ 100), based on the observation that the top degree
nodes of both graphs roughly correspond to each other. We measured the performance
by accuracy, which was defined as the fraction of correct mappings among all actual
mappings between the top n degree nodes of both graphs. In our experiments, we ran
the SA algorithm with n = 20 on graph pairs with 100% overlap, and the result was
reported as the median of 30 trials. For most of the anonymization algorithms men-
tioned in Section 6.1.2, the average accuracy of our algorithm for the top 20 nodes was
at least 99%, 95%, and 94% for the msas, lj, and enron graphs, respectively. The high-
est accuracy of the SA algorithm, which turned out to be obtained against the naive
anonymization, was 32%, 84%, and 60%. For the k-degree anonymization algorithm
that only adds edges, both of the algorithms performed poorly on the top 20 nodes
(≤8%), and this was expected as discussed in Section 6.2.1. We also tried other values
for n and the node overlap, and obtained similar results. We further took the output of
the SA algorithm (n = 50) as seed mappings for the NS algorithm. The resulting preci-
sion varied from 2% to 76%, depending on datasets and anonymization algorithms, but
the recall was always lower than 10%.

As shown in Section 6.2.3, important nodes with higher eigenvector centrality were
more likely to be reidentified. We investigated the possibility of using eigenvector
centrality to obtain better seed mappings. We ran the SA algorithm to identify the top
n = 20 nodes with the same experiment settings as earlier. It turned out that picking
the top eigenvector centrality nodes was indeed a better strategy, and the highest
accuracy (obtained against the naive anonymization) for the msas, lj, and enron graphs
were 91%, 74%, and 100%, respectively. However, the accuracy varied depending on
the anonymization algorithm that was applied. For example, the accuracy for the three
graphs decreased to 82%, 58%, and 60%, respectively, when the target graphs were
sparsified with p = 0.1. On the other hand, our algorithm was robust against different
kinds of anonymizaton algorithms, and its accuracy was always close to 100%.

6.3. Rich Graphs

We further explored the performance of our algorithm on rich graphs. As de-
anonymizing the actual tweibo graph was infeasible, we simulated the process of
auxiliary graph collection and deanonymization instead.

6.3.1. Algorithm Settings. As mentioned in previous sections, the attribute similarity
measurements are determined by the adversary’s domain knowledge of the graph.
Herein, we introduce the exact definitions for node-attribute similarity, edge-attribute
similarity, and relation similarity used in our experiments.

Node-Attribute Similarity. We used three attributes—gender, birth year, and num-
ber of tweets—to measure node-attribute similarity. The similarity of gender was
measured in a trivial way: 1 for equal values, 1/2 if either value is unknown, or 0
otherwise. The birth years of two users were compared in this way: 1 for equal
values, 1/2 if the absolute difference is 1, or 0 otherwise. The numbers of tweets
were compared as r(x, y) = min{x, y}/ max{x, y}. The node-attribute similarity
score SX was then taken as the average of the three scores.

Edge-Attribute Similarity. The attribute of “following” relation was measured as
1 for equal values, or 0 if not equal. The other three numeric attributes were

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:21

Fig. 6. Precision of attacks for naive anonymization with various α (tweibo).

all measured by r(x, y). The edge-attribute similarity score SY was taken as the
average of the four scores.

Relation Similarity. To compare relations (i1, j1) and (i2, j2), we first calculated the
edge-attribute similarity scores of two edge pairs in opposite directions, which
were denoted as SY 1 = SY (i1, j1, i2, j2) and SY 2 = SY (j1, i1, j2, i2). If both edge
pairs were presented, SR was taken as the average of SY 1 and SY 2. Otherwise, the
pair with a missing edge was omitted, or zero if too many edges were missing.

6.3.2. Parameters. We kept the top K = 107 candidate pairs (see Section 5.2) to reduce
running time and space requirement. The parameter α (see Equation (3)) trades off the
importance of node attributes against graph structure and edge attributes. In addition,
the value of α is expected to be small to scale down the sum of neighboring similarity
scores to a comparable magnitude of node-attribute similarity for large-scale graphs.
In this sense, the determination of the value of α also involves the size of graphs. While
it is nontrivial to assess the impact of the preceding aspects, an empirical approach
could be employed to determine the proper value for α.

We carried out an experiment over different choices of α to find the best α in terms
of overall precision. We randomly extracted graph pairs with different overlaps (2,500,
5,000, and 10,000 nodes), where the auxiliary graph was limited to 10,000 nodes and
the target graph contained the other nodes (about 2.3 million). The result (Figure 6)
showed that values in a range between 10−15 and 10−4 yielded approximately the
highest precision. While our algorithm was not sensitive for different choices of α in
this range, we took α = 10−4 as a modest choice in consideration of robustness. With
this setting, the sum of neighboring similarity scores was scaled to a similar magnitude
of node-attribute similarity in Equation (3).

The result also indicated that utilizing only the information of graph structure and
edge attributes (α → ∞) was not satisfactory for deanonymization. Similarly, node
attributes alone (α → 0) were shown insufficient to identify the nodes too. However,
when the two types of information were incorporated, the precision of attacks was
boosted significantly.

6.3.3. Evaluation. For rich graphs, we were interested in evaluating the impact of alter-
ing graph structure and attributes on the deanonymization performance. We modified
the graph structure by applying anonymization algorithms described in Section 6.1.2.
The k-degree anonymity approach was infeasible for rich graphs due to the attributes,
so we omitted it here. For the perturbation approach, it was hard to decide the at-
tributes of new edges, so we took the approach proposed in Narayanan and Shmatikov

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:22 H. Fu et al.

Fig. 7. Precision of attacks with different node overlap (tweibo, K = 107).

[2009]. Briefly, for a desired perturbation proportion p, we removed a proportion of
q = p/(2 − p) edges in both the auxiliary and target graphs independently, therefore
the expected proportion of edge overlap was (1 − q)2/(1 − q2) = 1 − p.

Recall that the node overlap is between only 0.1% and 0.4%; the result (Figure 7)
showed reasonable precision and recall in deanonymizing rich graphs. Compared with
the naive approach, modifying the graph structure did not bring much difficulty to
deanonymization. Different randomization strategies did not differ much in terms of
precision. Further results (Figure 8) showed that attributes played important roles
in deanonymization and attribute perturbation reduced the precision to a consider-
able extent. As the attributes of nodes and edges provided meaningful information
to distinguish them, it was expected that attacking would be easier with such ad-
ditional information even if the auxiliary graph was rather smaller than the target
graph.

6.3.4. Efficiency. According to Section 5.2, the running time highly depends on K
(the number of maintained top candidate pairs). We used naive anonymization as
a case study to demonstrate the performance of our algorithm with different values
of K. The result (Figure 9) showed that our algorithm was efficient, provided that a
reasonable amount of the outputted mappings were correct. It can also be seen that
the number of correct mappings did not increase when a certain number of candidate
pairs were reached.

7. CONCLUSIONS

In this article, we proposed a deanonymization algorithm for social graphs based on a
node similarity measurement in consideration of graph structure and attributes. We

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:23

Fig. 8. Precision of attacks with different attribute perturbation (tweibo, K = 107, 5,000 overlap). Results
for other overlaps show similar behavior and are thus omitted.

Fig. 9. Precision and running time of attacks for naive anonymization (tweibo, K = 103, 104, . . . , 108).

evaluated the proposed algorithm against several typical anonymization algorithms on
four real datasets. Our results suggested that

—the proposed algorithm was efficient to deanonymize social graphs on a large scale;
—using the proposed attack and structural knowledge, for example, subgraphs around

target nodes, an adversary can easily break the anonymization algorithms that were
evaluated in this article;

—additional descriptive information made attacks more effective, even if it was inac-
curate and the graph overlap is small; and

—important nodes (in terms of eigenvector centrality) were at high privacy risks in the
proposed attack.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:24 H. Fu et al.

While it is usually agreed that a data publisher should never totally rely on any
anonymization algorithm, our result illustrated how easily an adversary could break
several typical anonymization algorithms. For simple graphs, the most straightforward
approach to resist our attack is to modify the graph structure so that the eigenvector
centrality is not that diverse. However, we doubt the resulting data utility, because
the eigenvectors of a graph’s adjacency matrix are related to several important graph
metrics [Ying and Wu 2008].

As the scale of users is of millions in social networking sites, one may think of
publishing a small but representative sample [Leskovec and Faloutsos 2006] of the full
data source. As long as the auxiliary graph collected by the adversary has little overlap
with the published graph, an effective attack would become infeasible. However, the
sampling could be tricky. For example, the dataset of IJCNN 2011 Social Network
Challenge, which is obtained from Flickr, was revealed to be biased towards high-
degree nodes. During the challenge, Narayanan et al. [2011] employed a crawling
strategy that is also biased toward high-degree nodes.6 Although the challenge dataset
(1 million nodes) and the crawled dataset (2 million nodes) account for only small
fractions of Flickr (51 million users in 20117), the edge overlap turns out to be quite
high (95.6%) and that is one of the keys of the success of deanonymization.

A rich graph contains more details about users and their interactions, so it is surely
of more interest for analysis. Our results indicated several challenges in protecting
privacy in rich graphs. First, graph structure and attributes may be of different im-
portance for application. On the other hand, our result illustrated the different impact
of modifying graph structure and attributes on privacy preservation. Therefore, the
balance between the two aspects should be considered when designing anonymization
algorithms for rich graphs. Second, the generalization approach is usually adopted
to anonymize attributes [Cormode et al. 2008; Campan and Truta 2009]. Instead of
providing the exact values of attributes thta make the deanonymization easier, the
generalization approach replaces attributes to values less specific, for example, gen-
eralizing birth year 1991 to 1990s. The trade-off is that the more general the values
are, the better protection and the less utility are provided. However, comparison of
attributes in an immediate manner is still feasible. As suggested by our results, the
generalization approach appeared to be vulnerable to our attack when the graph struc-
ture was presented. Finally, given that rich graphs are much more vulnerable than
simple graphs, we believe that it is necessary to rethink the problem of releasing
such data; for example, a different schema other than modifying graph structure and
attributes may be necessary.

APPENDIX

A. CONVERGENCE OF THE NEIGHBORMATCH ALGORITHM

Analogously to Section 4.1, we start with the case where G1 is a subgraph of G2.
We denote the adjacency matrix of G1 as A1 and its principal eigenvalue as λ1. The
corresponding eigenvector is denoted as v1 and it is normalized so that max{v|v ∈
v1} = 1.

We first consider a minor modification of Algorithm 1. Instead of S (0)(i, j) = 1, we take
S (0)(i, j) = v(i) as the initial values (Line 2 in Algorithm 1). The following discussion
is based on the modified version of the algorithm. The modification provides a simple
representation of the normalized similarity scores, as stated in the following.

6http://www.kaggle.com/c/socialNetwork/forums/t/257/how-we-did-it-ind-cca.
7http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

http://www.kaggle.com/c/socialNetwork/forums/t/257/how-we-did-it-ind-cca.
http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers.

Effective Social Graph Deanonymization 49:25

THEOREM A.1. The normalized node similarity score is obtained as R(k)(i, j) =
λ−k

1 S (k)(i, j).

PROOF. We first need to prove that Theorem 4.1 still applies to the modified algorithm.
The proof in Section 4.2 actually still works here, because the base case of induction
S (0)(i, i) ≥ S (0)(i, j) still holds and nothing else is changed.

According to Equation (2), we have T (k+1) = A1T (k) for k ≥ 0. On the other hand,
T (0) = v1 and A1v1 = λ1v1 by definition, so we have that

T (k) = Ak
1v1

= λk
1v1. (4)

The inverse of the scaling factor for normalization is

max
i∈V1, j∈V2

{S (k)(i, j)} = max
i∈V1

{T (k)(i)}

= λk
1 · max

i∈V1

{v1(i)}

= λk
1.

This shows that the normalization is simply done by dividing S (k) by λk
1, so the

normalized similarity score is R(k)(i, j) = λ−k
1 S (k)(i, j).

Now we are ready to prove the convergence of the normalized similarity scores.

THEOREM A.2. For any i ∈ V1 and j ∈ V2, the normalized similarity score R(k)(i, j)
converges.

PROOF. We shall prove the sequence {R(0)(i, j),R(1)(i, j),R(2)(i, j), . . .} is decreasing
by induction. By definition, we have R(0)(i, j) = S (0)(i, j) = v1(i). Theorem 4.1 and
Theorem A.1 show that

R(1)(i, j) = λ−1
1 S (1)(i, j)

≤ λ−1
1 T (1)(i)

= λ−1
1 · (λ1v1(i))

= R(0)(i, j). (5)

Hence, the claim R(0)(i, j) ≥ R(1)(i, j) holds for the base case.
For k ≥ 1, we assume R(k−1)(i, j) ≥ R(k)(i, j). The updating rule of S(i, j) (Equation (1))

is rearranged as

R(k+1)(i, j) = λ
−(k+1)
1

∑

(i′, j ′)∈�
(k+1)
i, j

S (k)(i′, j ′)

= λ−1
1

∑

(i′, j ′)∈�
(k+1)
i, j

R(k)(i′, j ′). (6)

When the weights of the bipartite graph B(k+1)
i, j are assigned based on R(k), the match

�
(k+1)
i, j is still optimal, since R(k) differs from S (k) by a factor of λ−k

1 that is a constant

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:26 H. Fu et al.

within an iteration. By assumption, we have that

R(k+1)(i, j) = λ−1
1

∑

(i′, j ′)∈�
(k+1)
i, j

R(k)(i′, j ′)

≤ λ−1
1

∑

(i′, j ′)∈�
(k+1)
i, j

R(k−1)(i′, j ′)

≤ λ−1
1

∑

(i′, j ′)∈�
(k)
i, j

R(k−1)(i′, j ′)

= R(k)(i, j). (7)

Given that the sequence {R(0)(i, j),R(1)(i, j),R(2)(i, j), . . .} is decreasing and bounded
below by 0, the monotone convergence theorem shows that R(k)(i, j) converges as k
increases.

For the general case where G1 and G2 have arbitrary overlap, it is unclear yet if the
original algorithm (Algorithm 1) will always converge, but our initial experiments show
that the difference of similarity scores goes below 10−3 after less than 20 iterations for
the datasets used in Section 6. In addition, we find it unnecessary to iterate until
convergence, and a small number of iterations (five iterations in our experiments) are
enough for effective deanonymization.

B. PROOF OF THEOREM 4.1 FOR GENERALIZED NODE SIMILARITY

PROOF. By assumption, we have T (0)(i) = SX(i, i) = 1 and S (0)(i, j) = SX(i, j) ≤ 1, so
the claim T (0)(i) ≥ S (0)(i, j) holds for the base case of induction. For k ≥ 0, we assume
the claim is true for k. By definition of the bipartite graph B(k+1)

i, j , the edge (i′, i′) has the
maximum weight:

w(i′, i′) = T (k)(i)SR(i, i′, i, i′)
≥ S (k)(i, j)SR(i, i′, j, j ′)
= w(i′, j ′).

Hence, �
(k+1)
i,i = {(i′, i′)|i′ ∈ N1(i)} is one of the optimal matches for T (k)(i). As all optimal

matches have the same overall scores, the updated self-similarity score is

T (k+1)(i) = α ·
∑

i′∈N1(i)

S (k)(i′, i′) + SX(i, i)

= α ·
∑

i′∈N1(i)

T (k)(i′) + 1. (8)

We then have that

S (k+1)(i, j) = α ·
∑

(i′, j ′)∈�
(k+1)
i, j

S (k)(i′, j ′) + SX(i, j)

≤ α ·
∑

(i′, j ′)∈�
(k+1)
i, j

T (k)(i′) + 1

≤ α ·
∑

i′∈N1(i)

T (k)(i′) + 1

= T (k+1)(i).

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:27

ACKNOWLEDGMENTS

We would like to gratefully acknowledge the organizers of WSDM 2013 Data Challenge as well as Microsoft
Academic Search for providing the msas dataset. We also acknowledge the organizers of KDD Cup 2012
as well as Tencent Inc. for making the tweibo dataset available. Finally, special thanks to Lei Zou from
Peking University and Nicholas Yuan from Microsoft Research for their advice, and Yang Chen from Wuhan
University for her special support.

REFERENCES

Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. Reviews of Modern
Physics 74, 1 (Jan. 2002), 47–97.

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. 2007. Wherefore art thou r3579x?: Anonymized so-
cial networks, hidden patterns, and structural steganography. In Proceedings of the 16th International
Conference on World Wide Web (WWW’07). 181–190.

Albert-László Barabási, Hawoong Jeong, Zoltán Néda, Erzsébet Ravasz, András Schubert, and Tamás Vicsek.
2002. Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and
its Applications 311, 3 (2002), 590–614.

Vincent D. Blondel, Anahı́ Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van Dooren. 2004. A
measure of similarity between graph vertices: Applications to synonym extraction and web searching.
SIAM Review 46, 4 (April 2004), 647–666.

Phillip Bonacich. 1987. Power and centrality: A family of measures. American Journa of Sociology (1987),
1170–1182.

Francesco Bonchi, Aristides Gionis, and Tamir Tassa. 2011. Identity obfuscation in graphs through the
information theoretic lens. In Proceedings of the 27th International Conference on Data Engineering
(ICDE’11). 924–935.

Alina Campan and Traian Marius Truta. 2009. Data and structural k-anonymity in social networks. In
Privacy, Security, and Trust in KDD. 33–54.

James Cheng, Ada Wai-chee Fu, and Jia Liu. 2010. K-isomorphism: Privacy preserving network publica-
tion against structural attacks. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data. 459–470.

Stephen A Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on Theory of Computing. 151–158.

Graham Cormode, Divesh Srivastava, Ting Yu, and Qing Zhang. 2008. Anonymizing bipartite graph data
using safe groupings. Proceedings of the VLDB Endowment 1, 1 (Aug. 2008), 833–844.

Cynthia Dwork. 2006. Differential privacy. Automata, Languages and Programming 4052 (2006), 1–12.
Hao Fu, Aston Zhang, and Xing Xie. 2014. De-anonymizing social graphs via node similarity. In Proceedings

of the 23rd International Conference on World Wide Web Companion (WWW’14).
Gabor Gyorgy Gulyas and Sandor Imre. 2014. Measuring importance of seeding for structural de-

anonymization attacks in social networks. In Proceedings of the IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops’14). 610–615.

Pritam Gundecha, Geoffrey Barbier, and Huan Liu. 2011. Exploiting vulnerability to secure user privacy
on a social networking site. In Proceedings of the 17th ACM International Conference on Knowledge
Discovery and Data Mining (KDD’11). 511–519.

Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis. 2008. Resisting structural re-
identification in anonymized social networks. Proceedings of the VLDB Endowment 1, 1 (2008), 102–114.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the accuracy of differentially
private histograms through consistency. Proceedings of the VLDB Endowment 3, 1 (2010).

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and Christos
Faloutsos. 2011. It’s who you know: Graph mining using recursive structural features. In Proceedings of
the 17th ACM International Conference on Knowledge Discovery and Data Mining (KDD’11). 663–671.

Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context similarity. In Proceedings of
the 8th ACM International Conference on Knowledge Discovery and Data Mining (KDD’11). 538–543.

Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. 2011. Private analysis of
graph structure. Proceedings of the VLDB Endowment 4, 11 (2011), 1146–1157.

Mohammed Korayem and David J Crandall. 2013. De-anonymizing users across heterogeneous social com-
puting platforms. In the 7th International AAAI Conference on Weblogs and Social Media (ICWSM’13).

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

49:28 H. Fu et al.

Harold W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quar-
terly 2, 1–2 (1955), 83–97.

Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In Proceedings of the 12th ACM
International Conference on Knowledge Discovery and Data Mining (KDD’06). 631–636.

David Liben-Nowell and Jon Kleinberg. 2003. The link prediction problem for social networks. In Proceed-
ings of the 12th International Conference on Information and Knowledge Management (CIKM’03). 556–
559.

Kun Liu and Evimaria Terzi. 2008. Towards identity anonymization on graphs. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data. 93–106.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flooding: A versatile graph match-
ing algorithm and its application to schema matching. In Proceedings of the 18th International Conference
on Data Engineering (ICDE’02). 117–128.

Alan Mislove, Bimal Viswanath, Krishna P. Gummadi, and Peter Druschel. 2010. You are who you know:
Inferring user profiles in online social networks. In Proceedings of the 3rd International Conference on
Web Search and Data Mining (WSDM’10). 251–260.

Prateek Mittal, Charalampos Papamanthou, and Dawn Song. 2013. Preserving link privacy in social network
based systems. In Network and Distributed System Security Symposium (NDSS’13).

Arvind Narayanan, Elaine Shi, and Benjamin I. P. Rubinstein. 2011. Link prediction by de-anonymization:
How we won the kaggle social network challenge. In Proceedings of the 2011 International Joint Confer-
ence on Neural Networks (IJCNN). 1825–1834.

Arvind Narayanan and Vitaly Shmatikov. 2009. De-anonymizing social networks. In Proceedings of the 2009
IEEE Symposium on Security and Privacy. 173–187.

Pedram Pedarsani and Matthias Grossglauser. 2011. On the privacy of anonymized networks. In Proceedings
of the 17th ACM International Conference on Knowledge Discovery and Data Mining (KDD’11). 1235–
1243.

Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y. Zhao. 2011. Sharing graphs using
differentially private graph models. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (IMC’11). 81–98.

Chih-Hua Tai, Philip S. Yu, De-Nian Yang, and Ming-Syan Chen. 2011. Privacy-preserving social network
publication against friendship attacks. In Proceedings of the 17th ACM International Conference on
Knowledge Discovery and Data Mining (KDD’11). 1262–1270.

Tamir Tassa and Dror J. Cohen. 2013. Anonymization of centralized and distributed social networks by
sequential clustering. IEEE Transactions on Knowledge and Data Engineering (TKDE) 25, 2 (Feb.
2013), 311–324.

Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ’small-world’ networks. Nature 393,
6684 (June 1998), 440–442.

Leting Wu, Xiaowei Ying, and Xintao Wu. 2010b. Reconstruction from randomized graph via low rank
approximation. In Proceedings of the 2010 SIAM International Conference on Data Mining (SDM’10).
60–71.

Wentao Wu, Yanghua Xiao, Wei Wang, Zhenying He, and Zhihui Wang. 2010a. K-symmetry model for identity
anonymization in social networks. In Proceedings of the 13th International Conference on Extending
Database Technology (EDBT’10). 111–122.

Xintao Wu, Xiaowei Ying, Kun Liu, and Lei Chen. 2010c. A survey of privacy-preservation of graphs and
social networks. Managing and Mining Graph Data (2010), 421–453.

Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network communities based on ground-truth.
In Proceedings of the 2012 IEEE International Conference on Data Mining (ICDM’10). 745–754.

Lyudmila Yartseva and Matthias Grossglauser. 2013. On the performance of percolation graph matching. In
Proceedings of the 1st ACM Conference on Online Social Networks (COSN’13). 119–130.

Xiaowei Ying and Xintao Wu. 2008. Randomizing social networks: A spectrum preserving approach. In
Proceedings of the 2008 SIAM International Conference on Data Mining (SDM). 739–750.

Xiaowei Ying and Xintao Wu. 2009. Graph generation with prescribed feature constraints. In Proceedings of
the 2009 SIAM International Conference on Data Mining (SDM’09), Vol. 9. 966–977.

Xiaowei Ying and Xintao Wu. 2011. On link privacy in randomizing social networks. Knowledge and Infor-
mation Systems 28, 3 (2011), 645–663.

Aston Zhang, Xing Xie, Kevin Chen-Chuan, Carl A. Gunter, Jiawei Han, and XiaoFeng Wang. 2014. Pri-
vacy risk in anonymized heterogeneous information networks. In Proceedings of the 17th International
Conference on Extending Database Technology (EDBT’14).

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

Effective Social Graph Deanonymization 49:29

Elena Zheleva and Lise Getoor. 2008. Preserving the privacy of sensitive relationships in graph data. In
Privacy, Security, and Trust in KDD. 153–171.

Bin Zhou and Jian Pei. 2008. Preserving privacy in social networks against neighborhood attacks. In Pro-
ceedings of the 24th International Conference on Data Engineering (ICDE’08). 506–515.

Lei Zou, Lei Chen, and M. Tamer Özsu. 2009. K-automorphism: A general framework for privacy preserving
network publication. Proceedings of the VLDB Endowment 2, 1 (2009), 946–957.

Received October 2014; accepted December 2014

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 49, Publication date: July 2015.

