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B. PROOF OF LEMMA A.1
PROOF. Recall Assumption 3.3 that R(w) is block separable. We first define

proxη(w) =
[
proxη,1(wG1)

>, . . . , proxη,j(wGj )
>]>, (B.1)
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(t)
i )−∇Gjfi(φ

(t−1)
i ) +

1

n

n∑
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∇Gjfk(φ
(t−1)
k ), (B.2)

δGj =
[
0, . . . , 0, proxη,j(w

(t−1)
Gj − ηgi,Gj )

> − proxη,j
(
w∗Gj − η∇GjF (w∗)

)>
, 0, . . . , 0

]>
, (B.3)

and δ = proxη(w
(t−1) − ηgi)− proxη

(
w∗ − η∇F (w∗)

)
. (B.4)

Since R(w) is block separable, δGj and δGj′ are orthogonal to each other for all j 6= j′, and by (B.3) and (B.4) we have

Ej
[
‖δGj‖2

]
=

1

m

m∑
j=1

‖δGj‖2 =
‖δ‖2

m
. (B.5)

Similarly, for convenience of technical discussions we further define

ψGj =
[
0, . . . , 0, (w

(t−1)
Gj −w∗Gj )

>, 0, . . . , 0
]> (B.6)

and ψ = w(t−1) −w∗, (B.7)

then we are able to obtain their relation:

Ej
[
‖ψGj‖2

]
=

1

m

m∑
j=1

‖ψGj‖2 =
‖ψ‖2

m
. (B.8)

From the definition in (B.2), by exploiting the block separability of R(w), we have
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[
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]
=
∑
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[
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Gj − ηgi,Gj )− proxη,j
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)∥∥∥2].
After substitution with (B.3), (B.4), (B.6), and (B.7), according to (B.5) and (B.8), since∑

k 6=j
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[
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]
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]
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(m− 1)‖ψ‖2

m
+
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m
,

by the non-expansiveness of the proximal operator (B.1) [32] and that w∗ is the optimal value in (1.1),
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]
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m
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]
. (B.9)

C. PROOF OF LEMMA A.2
PROOF. The proof is straightforward using the definition of gi in (A.1).
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D. PROOF OF LEMMA A.3
PROOF. To prove Lemma A.3, we begin by computing Ei[gi −∇F (w∗)] with gi defined in (A.1) and Lemma A.2:

Ei[gi −∇F (w∗)] = ∇F (w(t−1))−∇F (w∗). (D.1)

By variance decomposition that E
[
‖x‖2

]
= E

[
‖x− E[x]‖2

]
+
∥∥E[x]∥∥2 for all x, using (D.1),
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(D.2)

Applying the property that ‖x+ y‖2 ≤ (1 + ζ) ‖x‖2 + (1 + ζ−1) ‖y‖2 for all x,y, and ζ > 0 to (D.2),
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(D.3)

To simplify terms on the right-hand side of (D.3) using variance decomposition, we have
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(D.4)

and we obtain the following inequality by dropping a non-positive term:

Ei
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(D.5)

Plugging (D.4) and (D.5) into (D.3), we complete the proof with

Ei
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]
≤ (1 + ζ)Ei
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E. PROOF OF LEMMA A.4
PROOF. For the convenience of this proof, we first define a function

h(x) = f(x)− µ

2
‖x‖2 . (E.1)



Recall that f is strongly convex with the convexity parameter µ and its gradient is Lipschitz continuous with the constant L. By twice
differentiating h(w), we obtain that the gradient of h is Lipschitz continuous with the constant L− µ.

By the property of f that is convex and has a Lipschitz continuous gradient: f(y) ≥ f(x)+〈∇f(x),y−x〉+‖∇f(x)−∇f(y)‖2 /(2L)
for all x and y [30] (Theorem 2.1.5), we have

h(x) ≥ h(y) + 〈∇h(y),x− y〉+ 1

2(L− µ) ‖∇h(x)−∇h(y)‖
2 .

By substitution of h(x) according to (E.1),

f(x)− µ

2
‖x‖2 ≥ f(y)− µ

2
‖y‖2 + 〈∇f(y)− µy,x− y〉

+
1

2(L− µ)
[
‖∇f(x)−∇f(y)‖2 + µ2 ‖y − x‖2 + 2µ〈∇f(x)−∇f(y),y − x〉

]
.

Re-arranging terms gives the following relation:

〈∇f(y),x− y〉 ≤ f(x)− f(y)− 1

2(L− µ) ‖∇f(x)−∇f(y)‖
2 − µ

L− µ 〈∇f(x)−∇f(y),y − x〉

−
(µ
2
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2
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)
− µ2

2(L− µ) ‖y − x‖2 .
(E.2)

After simplifying terms on the right-hand side of (E.2) by
µ

2
‖x‖2 − µ

2
‖y‖2 − µ〈y,x− y〉

=
µ

2
‖x‖2 − µ

2
‖y‖2 − µ〈x,y〉+ µ ‖y‖2

=
µ

2
‖y − x‖2 ,

we are able to obtain the conclusion of Lemma A.4:

〈∇f(y),x− y〉 ≤ f(x)− f(y)− 1

2(L− µ) ‖∇f(x)−∇f(y)‖
2 − µ

L− µ 〈∇f(x)−∇f(y),y − x〉 − Lµ

2(L− µ) ‖y − x‖2 .

F. PROOF OF LEMMA A.5
PROOF. Recall that in Algorithm 1, at each iteration one component function fi is sampled at probability pi from n functions. Thus,

Ei[fi(φ(t)
i )] = pifi(φ

(t)
i ) + (1− pi)fi(φ(t−1)

i ). (F.1)

Plugging (F.1) and φ(t)
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i )], we obtain
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i ).
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